

EDITORIAL BOARD

Editor-in-Chief:

Dr. T.Kalpalatha Reddy,
Professor, ECE,
Principal.

Editors:

Dr. B. Rama Subba Reddy,
HOD, Professor, CSE,
Mrs. G.T.Prasanna
Kumari, Assoc. Professor,
CSE.
Mrs S. Kavitha,
Asst. Professor, CSE.
Mrs K.Padmaja,
Asst. Professor, CSE.

Student Members :
Ms M.Vikitha, IV CSE.
Ms V.Lakshmi, III CSE.

INSIDE THIS ISSUE:

Vision,Mission & PEO's

1

Clayodor

2

Veem,gent,
Holograms

3

Aneka

4

Machine Learning

5

Deep Neural n/w

6

Internet Of Things

7

Brain controlled
robots, Android

8

Cloud drops

9

ECHELON

A DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING's MAGAZINE

JUL - 2018 - MAY - 2019

Vision of the Department

To become a centre of excellence that grooms globally competent and ethical engineers with the talent for higher learning and research and the capability to think critically of innovative solutions for diverse social needs.

Mission of the Department

M1: To impart quality technical education with strong foundations using superior academic standards and well-equipped infrastructure.

M2: To provide excellent pedagogics through qualified and highly skilled faculty who are trained on a regular basis.

M3: To establish research labs and a centre of excellence that will nurture the technical skills by training them with state of art technology required for the industry.

M4: To inculcate professional and ethical values in the students along with leadership qualities so that they are well equipped to handle the dynamic and diverse challenges they will face as engineers.

Programme Educational Objectives (PEOs)

- PEO-1: To exhibit strong fundamental concepts of Computer Science & Engineering along with advanced knowledge on emerging technologies so that they can devise solutions for real time & social issues.
- PEO-2: To be employed, to pursue higher studies, to become entrepreneurs and also to have an excellent aptitude for research.
- PEO-3: To be technically sound, socially acceptable and ethical professionals with global competence.
- PEO-4: To be young leaders with the capability to lead teams with good communication skills and excellence in social awareness.

Clayodor

clayodor (\klei-o-dor) is a clay-like smells for recall. On a poetic note, you associate particular smells with malleable material that changes our work explores how shaping smartphone notifications. The smell based on user manipulation materials into symbolic forms Smelling Screen is a display of its shape. This work explores the serves as triggers to scents that system that can generate smell tangibility of shape changing connect people to past experiences. distribution on a 2D screen. materials to capture smell, an One main challenge is the Ranasinghe et al. explored using ephemeral and intangible sensory complexity to produce arbitrary smell for digital communication, input. We present the design of a smells on demand. Humans have a enabling the sharing of smell over proof-of-concept prototype, and thousand different olfactory the Internet. By recreating smell discussions on the challenges of receptors in our nose, each sensing though form, clayodor explores the navigating smell though form. a different chemical bond possibility of form as a user-Recent HCI research has moved Reproducing arbitrary smell would designed navigator for smell. beyond static and rigid physical therefore require a thousand-interfaces to dynamically dimension space, which presents controlled materials. For example, significant challenges compared to

research has explored materials with dynamically changing qualities such as shape, stiffness, weight, and optical properties. For the last decade, researchers from CMU and Intel have worked towards the realization of Claytronics, a future material composed by nanoscale computers in the form of atoms. This will potentially enable direct and dynamic user manipulations with programmable materials. Building on top of the possibilities of shape changing interfaces, we envision clayodor, a clay-like malleable material that changes smell based on user manipulation of its shape. We explore the tangibility of

shaping a malleable material to the 3- dimensional space of vision capture an ephemeral and (RGB). Another challenge is the intangible sensor input: smell. By difficulty of creating as systemic allowing users to take this material and reproducible classification into their hands and physically scheme for smell. As humans refer shape it into various meaningful to smells through ambiguous forms, we are aiming to explore the descriptions, it is difficult to create potential mental model of coupling rigorous categorization for these forms with smells. Similarly, universal reference. Recent HCI Obrist et al also indicated the research efforts focus on user evocative quality of scent to interaction with smell-based connect people to memories and technology, rather than the past experiences. However, there is chemical engineering challenge of no focus on the power for objects reproducing specific scents. To the to be used as a symbol in the best of our knowledge, most production or recall of smell. systems use off the shelf aromas in Further, we posit that because their prototypes, focusing research smell is a distinctively difficult effort on interaction design. sense to describe, shaping and Brewster et al. developed a smell-molding objects has potential to based photo-tagging tool (Olfoto) forgo the necessity for users to to elicit memories though smell. attempt at providing descriptions of Commercial product Scentee lets

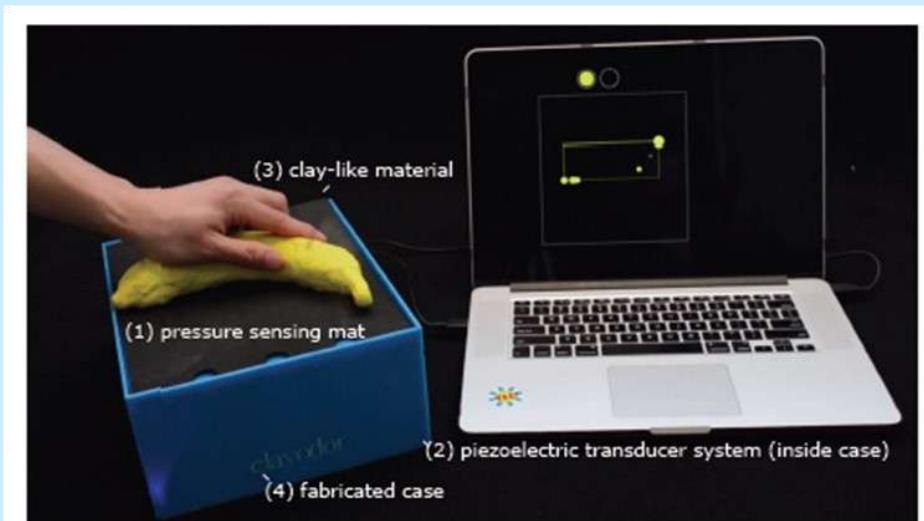
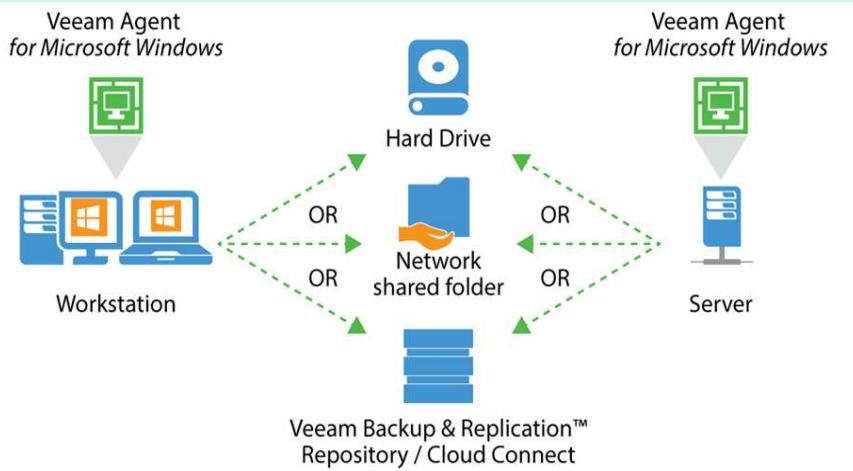


Figure 1. clayodor prototype

Submitted by
C.Nikhila

189E1A1235


New Veeam Agent for Microsoft Windows

Due to various factors, including complex hardware configurations and regulatory compliance requirements, some physical servers and workstations cannot be virtualized. And everyday occurrences such as lapses in connectivity, hardware failures, file corruption— even ransomware or thefcn leave an organization's data at risk.

NEW Veeam® Agent for Microsoft Windows — a key component of the Veeam Availability Platform — solves these issues by closing the gap that some enterprises face with large, heterogeneous or multi-cloud environments environments and further enables workload mobility by delivering Availability for Windows-based workstations, physical servers and cloud instances.

Veeam Agent for Microsoft Windows is built on the extremely successful Veeam Endpoint Backup™ FREE and includes three editions. Workstation, Physical Server and Cloud Instance — with additional features designed to ensure the Availability of your Windows workloads by providing backup and recovery for

physical and cloud-based workloads, as well as endpoint devices that belong to remote users and tablets outside the corporate

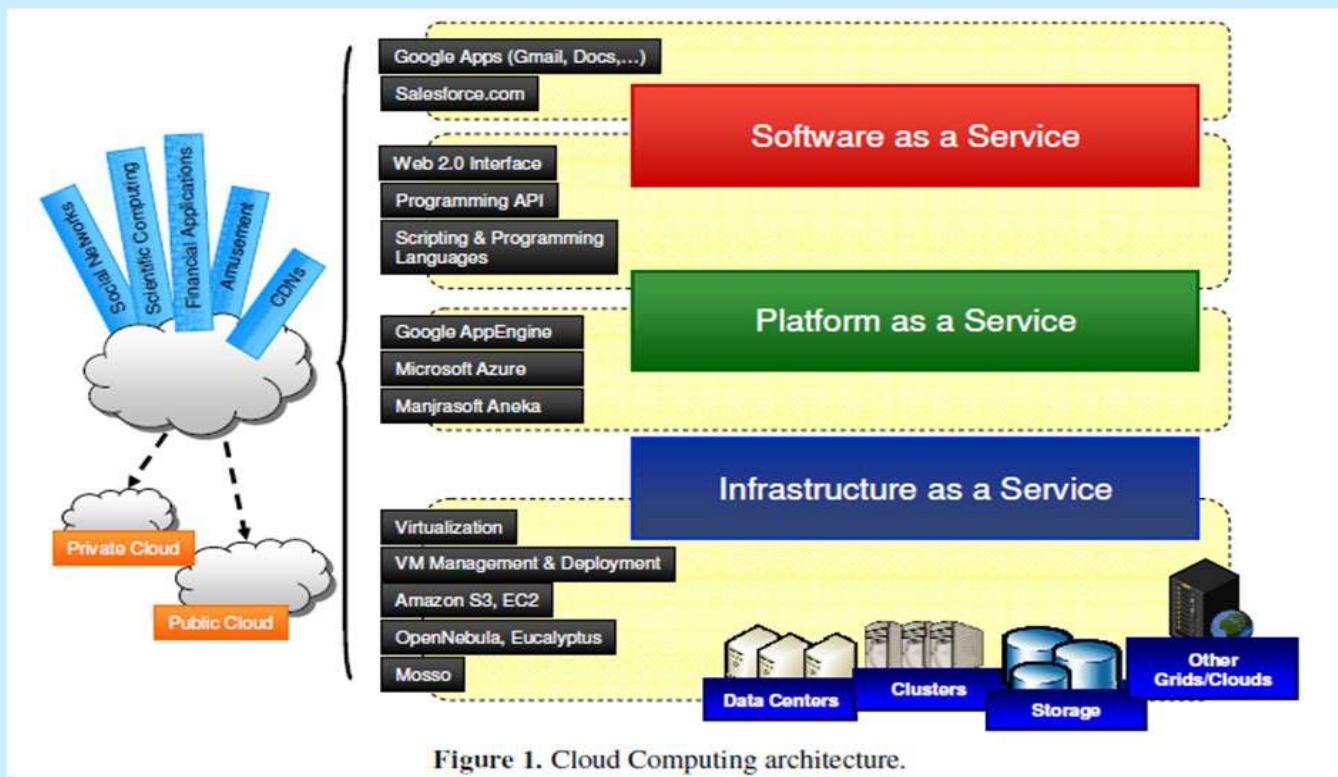
ers. With Veeam Agent for Microsoft Windows, you get:

Enterprise-level backup and recovery: Get complete protection for both workstations and Windows-based servers those running in the cloud including full application awareness

Physical backups off site: Back up Windows-based workloads off site to a cloud service provider through Veeam Cloud Connect and more

Submitted by
D.Vasavi
189E1A1242

Holograms


Holograms were used mostly in telecommunications as an alternative to screens. Holograms could be transmitted directly, or they could be stored in various storage devices (such as holodiscs) the storage device can be hooked up with a holoprojector in order for the stored image to be accessed [1]. Fig.2. Example of visual Image Debatably, virtual reality goggles (which consist of two small screens but are nonetheless sufficiently different from traditional computer screens to be considered screen less) and heads-up display in jet fighters (which display images on the clear cockpit window) also are included in Visual Image category. In all of these cases, light is reflected off some intermediate object (hologram, LCD panel, or cockpit window) before it reaches the retina. In the case of LCD panels the light is refracted from the back of the panel, but is nonetheless a reflected source[3]. The new software and hardware will enable the user to, in effect; make design adjustments in the system to fit his or her particular needs, capabilities, and preferences. They will enable the system to do such things as adjusting to users' behaviors in dealing with interactive movable type.

Submitted by
K.Divya
189E1A1272

Aneka: A Software Platform for .NET-based Cloud Computing

Aneka is a platform for deploying aims to be global and to provide Software as a Service (SaaS), Clouds developing applications on such services to the masses, Platform as a Service (PaaS), and top of it. It provides a runtime ranging from the end user that Infrastructure/Hardware as a environment and a set of APIs that hosts its personal documents on Service (IaaS/HaaS). These new allow developers to build .NET the Internet, to enterprises concepts are also useful to classify applications that leverage their outsourcing their entire IT the available options for computation on either public or infrastructure to external data leveraging on the Cloud the IT private clouds. One of the key centers. Neverbefore an approach needs of everyone. Examples of features of Aneka is the ability of to make IT a real utility has been Software as a Service are supporting multiple programming so global and complete: not only Salesforce.com 2 and models that are ways of computing and storage resources Clarizen.com3 , which expressing the execution logic of are delivered on demand but the respectively provide on line CRM applications by using specific entire stack of computing can be and project management services. abstractions. This is accomplished leveraged on the Cloud. Figure 1 PaaS solutions, such as Google

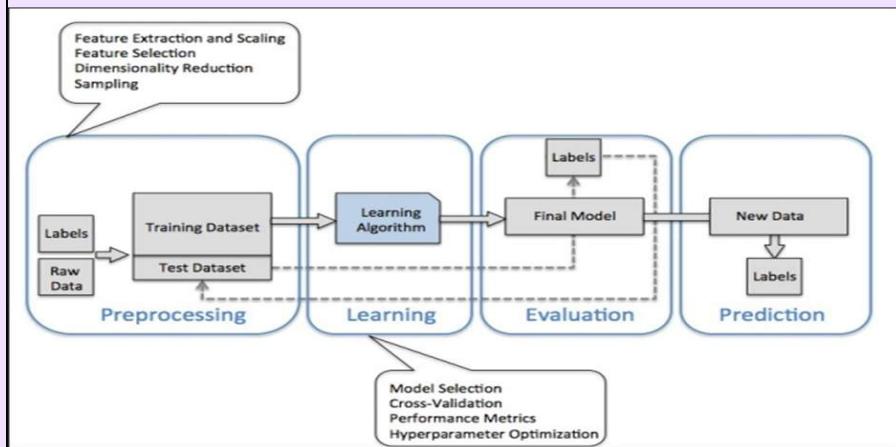
Figure 1. Cloud Computing architecture.

by creating a customizable and provides an overall view of the AppEngine4 , Microsoft Azure5 , extensible service oriented scenario envisioned by Cloud and Manjrasoft Aneka provide runtime environment represented Computing. It encompasses so users with a development platform by a collection of software many aspects of computing that for creating distributed containers connected very hardly a single solution is applications that can automatically togetherCloud Computing [1] is able to provide everything that is scale on demand. recent technology trend whose needed. More likely, specific aim is to deliver on demand IT solutions can address the user resources on a pay per use basis. needs and be successful in Previous trends were limited to a delivering IT resources as a real specific class of users, or focused utility. Figure 1 also identifies the on making available on demand a three pillars on top of which specific IT resource, mostly Cloud Computing solutions are computing. Cloud Computing delivered to end users. These are:

Submitted by
A.Meghana(189E1A1201)

Machine learning

Machine Learning is a new trending field these days and is an application of artificial intelligence. Machine learning uses certain statistical algorithms to make computers work in a certain way without being explicitly programmed. The algorithms receive an input value and predict an output for this by the use of certain statistical methods. The main aim of machine learning is to create


is iterative i.e. repetition of process.

Scalability – The capacity of the machine can be increased or decreased in size and scale.

Modeling – The models are created according to the demand by the process of modeling.

Methods of Machine Learning

Machine Learning methods are classified into certain categories. These are:

intelligent machines which can think and work like human beings. Machine Learning is a branch of **Artificial Intelligence** that gives systems the ability to learn automatically and improve themselves from the experience without being explicitly programmed or without the intervention of human. Its main aim is to make computers learn automatically from the experience. **Requirements of creating good machine learning systems**

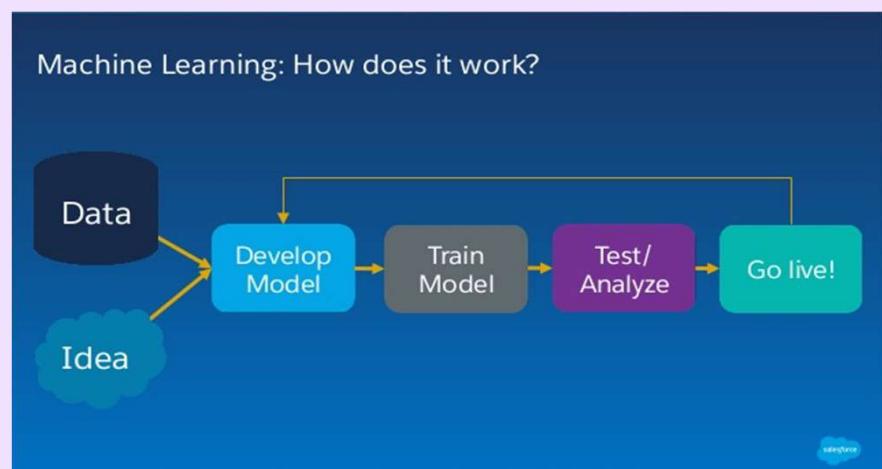
So what is required for creating such machine learning systems? Following are the things required in creating such machine learning systems:

Data – Input data is required for predicting the output.

Algorithms – Machine Learning is dependent on certain statistical algorithms to determine data patterns.

Automation – It is the ability to make systems operate automatically.

Iteration – The complete process


Supervised Learning – In this method, input and output is provided to the computer along with feedback during the training. The accuracy of y is done for predictions. This

find the output on its own. Unsupervised learning is mostly applied on transactional data. It is used in more complex tasks. It uses another approach of iteration known as deep learning to arrive at some conclusions.

Reinforcement Learning – This type of learning uses three components namely – agent, environment, action. An agent is the one that perceives its surroundings, an environment is the one with which an agent interacts and acts in that environment. The main goal in reinforcement learning is to find the best possible policy.

How does machine learning work? Machine learning makes use of processes similar to that of data mining. Machine learning algorithms are described in terms of target function(f) that maps input variable (x) to an output variable (y). This can be represented as: $y=f(x)$

There is also an error e which is the independent of the input variable x. Thus the more generalized form of the equation is: $y=f(x) + e$

predictions by the computer method is known as predictive modeling to make most accurate predictions. The main goal of this training is to make computers learn how to map input to the output.

Unsupervised Learning – In this case, no such training is provided leaving computers to

*Submitted by
Y.Chandini*

Deep Neural Network

Deep Learning: One of the machine learning technique that learns features directly from data. Having millions of parameters. The procedure of deep neural networks is as follows:

Why deep learning: When the amount of data is increased, machine learning techniques are insufficient in terms of performance and deep learning gives better performance like accuracy.

What is amount of big: It is hard to answer but intuitively 1 million sample is enough to say "big amount of data"

Usage fields of deep learning: Speech recognition, image classification, natural language processing (nlp) or recommendation systems

What is difference of deep learning from machine learning:

Machine learning covers deep learning.

Features are given machine learning manually.

On the other hand, deep learning learns features directly from data.

Deep Learning is a part of the broader field machine learning and is based on data representation learning. It is based on the interpretation of artificial neural network. Deep Learning algorithm uses many layers of processing. Each layer uses the output of previous layer as an input to itself. The algorithm used can be supervised algorithm or unsupervised algorithm. Deep Learning is mainly developed to handle complex mappings of input and output. It is another hot topic for M.Tech thesis and project along with machine learning.

Deep Neural Network

Deep Neural Network is a type of Artificial Neural Network with multiple layers which are hidden between the input layer and the output layer. This concept is known as feature hierarchy and it tends to increase the complexity and abstraction of data. This gives network the ability to handle very large, high-dimensional data sets

Consider some examples from a sample dataset.

Calculate error for this network. Improve weight of the network to reduce the error.

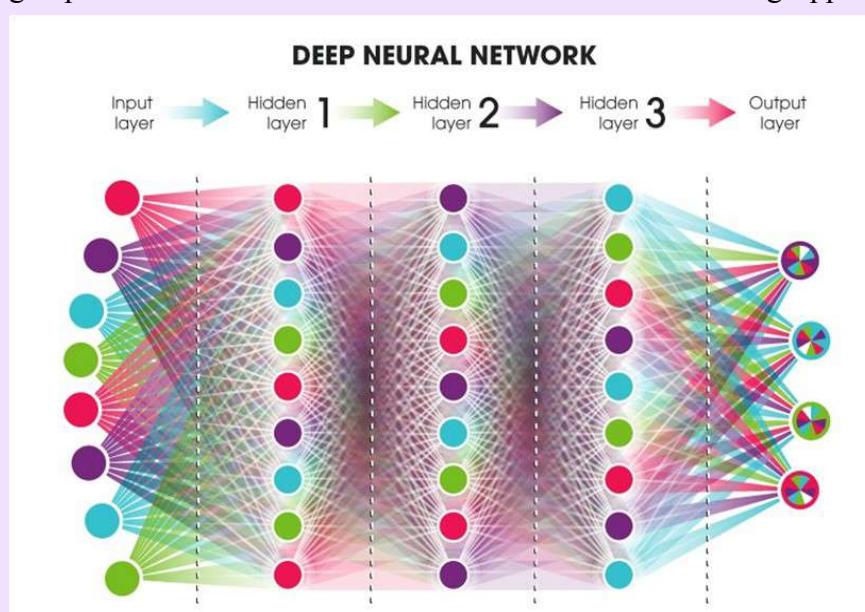
Repeat the procedure.

Applications of Deep Learning

Here are some of the applications of Deep Learning:

1. Automatic Speech Recognition
2. Image Recognition
3. Natural Language Processing
4. Toxicology
5. Customer Relationship Management
6. Bioinformatics
7. Mobile Advertising

Advantages of Deep Learning


Deep Learning helps in solving certain complex problems with high speed which were earlier left various machine learning applica-

Deep Learning helps in identifying defects which left untraceable in the system.

Can inspect irregular shapes and patterns – Deep Learning can inspect irregular shapes and patterns which is difficult for machine learning to detect.

From this introduction, you must have known that why this topic is called as hot for your M.Tech thesis and projects. This was just the basic introduction to machine learning and deep learning. There is more to explore in these fields.

It is a part of the family of machine learning and deals with the functioning of the artificial neural network. Neural Networks are used to study the functioning of the human brain. It is one of the growing and exciting field. Deep learning has made it possible for the practical implementation of

unsolved. Deep Learning is very useful in real world applications.

Following are some of the main advantages of deep learning:

Eliminates unnecessary costs –

Deep Learning helps to eliminate unnecessary costs by detecting defects and errors in the system.

Identifies defects which otherwise are difficult to detect –

Submitted by

S.V.Vidhya

179E1A05H4

INTERNET OF THINGS (IOT)

It's believed by many that in the cation of property, and the app but would be a step in the right future, when human population works out how much the house- direction. Users start by entering has swelled to unprecedented lev- hold should be using per day. This household information into the els, water will be so scarce that is then illustrated using a digital app, like number of residents, lo- fighting over it will be the cause tank of water, which depletes as cation of property, and the app of most wars. Wouldn't it be bet- water is used revealing a desert works out how much the house- ter if we just wasted less? Two behind the water. The hope is that hold should be using per day. This Californian firms that have come water usage will no longer feel so up with well – a smart home init- abstract

ative that uses sensors to monitor water usage. IOT water Conversa- tion system hopes to reduce waste.

is then illustrated using a digital tank of water, which depletes as water is used revealing a desert behind the water. The hope is that water usage will no longer feel so abstract and users will start to conserve more. The app also creates daily, weekly, monthly and yearly usage charts. The system should help each household save around 12 percent of water, which might not change the world overnight but would be a step in the right direction.

The firms realised early on that – unlike with power use – very few people have any idea how much water they use. The core of the design is a network of sensors attached to each water outlet, like kitchen and bathroom sinks, toilet, washing machine and the biggest user of all – the shower. Each and component is self-powered and us- doesn't require professional instal- lation, and when each sensor is will

connected via WiFi, the infor- start to conserve more. The app mation is then sent to the custom- also creates daily, weekly, month- er's smart phone so they have an ly and yearly accurate tally of all their water usage charts. The system should usage. Users start by entering help each household save around household information into the 12 percent of water, which might app, like number of residents, lo- not change the world overnight

Submitted by
C.Keerthi
159E1AO539

Brain controlled Robots

For robots to do what we want, certain action, without needing to modulating one's thoughts can be they need to understand us. Too often, this means having to meet them halfway: teaching them the intricacies of human language, for example, or giving them explicit commands for very specific tasks. But what if we could develop robots that were a more natural extension of us and that could actually do whatever we are thinking? Using data from an electroencephalography (EEG) monitor that records brain activity, the system can detect if a person notices an error as a robot performs an object-sorting task. The team's novel machine-learning algorithms enable the system to classify brain waves in the space of 10 to 30 milliseconds. While the system currently handles relatively simple binary-choice activities, the paper's senior author says that the work suggests that we could one day control robots in much more intuitive ways. "Imagine being able to instantaneously tell a robot to do a training process and the act of which corresponds to a different task for the robot to execute. The downside to this method is that the

Submitted by
K.Dedeepya
169E1A0556

Talking to an android

We've all tried talking with devices, and in some cases they talk back. But, it's a far cry from having a conversation with a real person. Now, a research team from Kyoto University, Osaka University, and the Advanced Telecommunications Research Institute, or ATR, has significantly upgraded the interaction system for conversational android ERICA, giving her even greater dialog skills. ERICA is an android created by Hiroshi Ishiguro of Osaka University and ATR, specifically designed for natural conversation through incorporation of human-like facial expressions and gestures. The research team demonstrated the updates during a symposium at the National Museum of Emerging Science in Tokyo. "When we talk to one another, it's never a simple back and forward progression of information," says Tatsuya Kawahara of Kyoto University's Graduate School of Informatics, and an expert

in speech and audio processing. "Listening is active. We express agreement by nodding or saying 'uh-huh' to maintain the momentum of conversation. This is called 'back channeling,' and is something we wanted to implement with ERICA." The team also focused on developing a system for "attentive listening." This is when a listener asks elaborating questions, or repeats the last word of the speaker's sentence, allowing for more engaging dialogue.

Deploying a series of distance sen-

Submitted by
P.Padmaja
159E1AO5f9

CloudDrops

Cloud Drops is a pervasive aware- ness platform that integrates virtual information from the Web more closely with the contextually rich physical spaces in which we live. Cloud Drops consists of many interactive stamp sized displays, each showing a tiny bit of possibilities of using a handheld digital information. The large number of displays and their small size allows the user to flexibly instrument, orchestrate and re-configure his or her personal information environment, to stay aware of digital information. However, People intensively use physical

of digital information. However,

space for accessing and remember- ing paper-bound information Trans- forming large parts of our formerly physical information environment into the digital realm has its obvious advantages that cannot be underesti- mated; but this also comes at a cost: we are giving up the notion of hav- ing an information item at a mean- ingful place and of using our entire surroundings for managing infor- mation.

Recent advances in pervasive display technologies enable high-resolution yet tiny, stamp-sized touch-displays that include processing power and networking capabilities. These self-contained devices are capable of displaying tiny information bits while being tangible

